Concise synthesis of azacycloundecenes using ring-closing metathesis (RCM)

Mitsuhiro Arisawa, Chiaki Kato, Hiroaki Kaneko, Atsushi Nishida and Masako Nakagawa*
Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Received (in Cambridge, UK) 15th March 2000, Accepted 11th April 2000
Published on the Web 23rd May 2000

Azacycloundecenes, which are key intermediates in the synthesis of derivatives of the marine alkaloid manzamine C, are conveniently prepared using ring-closing olefin metathesis (RCM).

Introduction

Manzamines are a class of cytotoxic β-carboline alkaloids that were isolated from Okinawan marine sponges by Higa and coworkers. Manzamine C $\mathbf{1}$ is the simplest congener and bears an

unprecedented azacycloundecene ring. ${ }^{1}$ The total synthesis of $\mathbf{1}$ was first achieved by one of us^{2} and afterwards by Gerlach's group $^{3 a}$ and by Langlois' group ${ }^{3 b}$ using their own original methods. In the original synthesis of $\mathbf{1}$ and $\operatorname{trans}-(E)$ manzamine C 2, (Z)- and (E)-azacycloundecenes were key intermediates, and were prepared by conventional methods. Our colleagues have also successfully developed an efficient synthetic route to the saturated congener $\mathbf{3}$ in order to determine possible structure-activity relationships. ${ }^{4}$ Manzamine C 1, despite its rather simple structure, shows some of the cytotoxic activity found in manzamine A. Therefore the synthesis of $\mathbf{1}$ and related analogues is attractive from the perspective of structure-activity relationships.

Recently, the chemistry of carbene complexes of transition metals has been extensively studied. In particular the ringclosing olefin metathesis (RCM) developed by Grubbs' group has become a useful and novel method for constructing cyclic alkenes. ${ }^{5}$ In this paper, a convenient method for preparing azacycloundecenes using RCM is described.

Results and discussion

The formation of 11 -membered rings by RCM is distinctly unusual. ${ }^{5 b}$ Recently Gesson and co-workers successfully used RCM in the synthesis of 11 -membered lactones from carbohydrate derivatives. ${ }^{6}$ As shown in Scheme 1, azacycloundecene compounds ($\mathbf{5}$ or $\mathbf{6}$), which are key intermediates in our syntheses of $\mathbf{1}$ and $\mathbf{2}$, were prepared by cyclization of the ditosyl compound $\mathbf{4}$ derived from the corresponding alkyne. To investigate an alternative, convenient method for the synthesis of $\mathbf{5}$ or

Scheme 1

6, we studied the RCM of 7, which can be readily obtained in 83% yield by reaction of toluene-p-sulfonamide with 6-bromo-hex-1-ene. The results are shown in Table 1.

RCM with $10 \mathrm{~mol} \%$ of the Grubbs catalyst $\mathbf{8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.020 \mathrm{M})$ converted 7 to a single isomer of a cyclized product (16% yield), which was identified as the E isomer 6 by comparison with an authentic sample prepared previously, ${ }^{2}$ together with dimeric products. On the other hand, the same reaction of 7 in a more dilute solution $(0.002 \mathrm{M})$ gave two cyclized products, 6 (major) and the Z isomer 5 (minor) (run 2), which were readily separated by column chromatography. The yield was increased to 74% when the reactants were heated at $50^{\circ} \mathrm{C}$ (run 3).
We were interested in the biological activity of an oxygenfunctionalized analogue 9 , which was expected to be more soluble in water. Metathesis substrate $\mathbf{1 1}$ was prepared by diallylation of the corresponding diol 12, which was obtained in

Table 1 RCM: construction of cycloundecenes

Table 2 RCM: construction of oxygen-containing cycloundecenes

10
13
single isomer

Run	Solvent	Substrate concn. (M)	Temp. $\left(T /{ }^{\circ} \mathrm{C}\right)$	Reaction time	$\mathbf{1 0}(\%)$	$\mathbf{1 3}(\%)$
1	$\mathrm{Benzene}^{2}$	0.02	rt	4 d	11	62
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.02	rt	15 h	25	67
3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.002	rt	15 h	53	32
4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.002	50	15 h	49	41

66% yield from the reaction of a protected bromoethanol with toluene- p-sulfonamide (3 steps).

Reaction of $\mathbf{1 1}$ in 0.02 M solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or benzene using $10 \mathrm{~mol} \%$ of $\mathbf{8}$ gave dimeric compound 13 (62-67\%) and the (Z)-cycloundecene $\mathbf{1 0}$ ($11-25 \%$) (Table 2, runs 1 and 2).

Under more dilute conditions, in 0.002 M solution, 10 became the main product (53%, run 3). The yield of $\mathbf{1 0}$ did not increase when the reaction mixture was heated. The structure of 10 was determined by X-ray analysis and comparison of the spectral data with those of an authentic specimen prepared from stepwise etherification of diol $\mathbf{1 2}$ via the monoether 14 (Scheme 2). In contrast to $\mathbf{7}$, the same reaction of $\mathbf{1 1}$ gave only

Z isomer $\mathbf{1 0}$, probably for conformational reasons. Thus, it is clear that RCM is an effective method for preparing oxygencontaining (Z)-undecene intermediates for manzamine C analogues, compared with the conventional method, and this will now be extended to the synthesis of marine alkaloids.
In summary, we have found that RCM easily gives key intermediates for the synthesis of manzamine C analogues. These results suggest that even small structural variations can significantly alter the stereochemical outcome. Further studies in which the present results are extended to the synthesis of azacycles including stereoselective RCM are currently in progress.

Experimental

All mps were measured on a Yanagimoto micro melting point apparatus and are uncorrected. IR absorption spectra were recorded using a JASCO FTIR-230 spectrometer. ${ }^{1} \mathrm{H}$ NMR (and ${ }^{13} \mathrm{C}$ NMR) spectra were recorded for samples in CDCl_{3} unless otherwise noted, at 400 MHz (JEOL-400 $)$, with TMS as internal standard. E. Merck silica gel 60 was used for column chromatography, and E. Merck precoated TLC plates, silica gel F_{254}, were used for preparative TLC. The organic layers were dried with anhydrous MgSO_{4} or $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{Cl}_{2}\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{Ru}=\mathrm{CHPh}$ $\mathbf{8}$ is commercially available.

N, N-Di(hex-5-enyl)toluene-p-sulfonamide 7

To a 100 mL flask were added 6-bromohex-1-ene ($1.63 \mathrm{~g}, 10.0$ $\mathrm{mmol})$, benzene $(34.0 \mathrm{~mL})$, water $(2.00 \mathrm{~mL}), n-\mathrm{Bu}_{4} \mathrm{NI}(1.85 \mathrm{~g}$, $5.00 \mathrm{mmol}, 0.500$ equiv.), toluene- p-sulfonamide ($1.03 \mathrm{~g}, 0.600$ mmol, 0.600 equiv.) and $\mathrm{NaOH}(800 \mathrm{mg}, 20.0 \mathrm{mmol}, 2.00$ equiv.), and the mixture was refluxed for 2.5 h . The reaction mixture was extracted with AcOEt , and the extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure and the crude residue was subjected to column chromatography (n-hexane-AcOEt $3: 1$) to yield compound $7(1.45 \mathrm{~g}, 83 \%)$ as a yellow oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $3074,2933,1640,1340,1158,910$ and $723 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.67(2 \mathrm{H}, \mathrm{d}, J 8.1 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J 8.1 \mathrm{~Hz})$, $5.80-5.70(2 \mathrm{H}, \mathrm{m}), 5.01-4.92(4 \mathrm{H}, \mathrm{m}), 3.09(4 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz})$, $2.41(3 \mathrm{H}, \mathrm{s}), 2.03(4 \mathrm{H}, \mathrm{td}, J 7.2,7.1 \mathrm{~Hz}), 1.56-1.49(4 \mathrm{H}$, m), 1.39-1.32 (4H, m); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 142.87, 138.27, 137.08, 129.51, 127.06, 114.73, 48.01, 33.18, 27.99, 25.87, 21.40; m/z (FAB) $336.2001\left(\mathrm{M}^{+}+\mathrm{H} . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{~S}\right.$ requires $m / z 336.1997$).

$\boldsymbol{N}, \boldsymbol{N}$-Bis(2-hydroxyethyl)toluene- \boldsymbol{p}-sulfonamide 12

To a 200 mL flask containing 3,4-dihydro-2H-pyran (14.8 g,
$180 \mathrm{mmol}, 1.10$ equiv.), was added $p-\mathrm{TsOH}(10.0 \mathrm{mg})$. The mixture was stirred at ambient temperature for 10 min . 2-Bromoethanol ($20.0 \mathrm{~g}, 160 \mathrm{mmol}$) was added dropwise over a period of 25 min , and the mixture was stirred for 10 min . The reaction was quenched by $\mathrm{NaHCO}_{3}(1.00 \mathrm{~g})$, and the mixture was stirred for 50 min at rt and filtered. The filtrate was evaporated under reduced pressure and the obtained residue was subjected to column chromatography (n-hexane-AcOEt 30:1~10:1) to yield 2-(2-bromoethoxy)tetrahydropyran ($29.1 \mathrm{~g}, 87 \%$) as a colorless oil.

To a 500 mL flask were added 2-(2-bromoethoxy)tetrahydropyran ($14.7 \mathrm{~g}, 70.3 \mathrm{mmol}$), benzene (240 mL), water (12.0 mL), n - $\mathrm{Bu}_{4} \mathrm{NI}(12.9 \mathrm{~g}, 34.9 \mathrm{mmol}, 0.500$ equiv.), toluene- p-sulfonamide ($7.20 \mathrm{~g}, 42.1 \mathrm{mmol}, 0.600$ equiv.) and $\mathrm{NaOH}(5.60 \mathrm{~g}, 140$ mmol, 2.00 equiv.), and the mixture was refluxed for 3 h . More toluene- p-sulfonamide ($2.00 \mathrm{~g}, 11.7 \mathrm{mmol}, 0.170$ equiv.) was added, and the mixture was refluxed for 3 h . The product was extracted with AcOEt, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure and the crude residue was subjected to column chromatography (n-hexane-AcOEt 3:1) to yield N, N-bis[2-(tetrahydropyran-2-yloxy)ethyl]toluene- p sulfonamide ($13.8 \mathrm{~g}, 93 \%$) as a yellow oil.

To a stirred solution of N, N-bis[2-(tetrahydropyran-2-yloxy)ethyl]toluene- p-sulfonamide ($13.8 \mathrm{~g}, 32.3 \mathrm{mmol}$) in $\mathrm{MeOH}(450 \mathrm{~mL})$ was added Amberlist-15 (2.20 g), and the mixture was stirred at rt for 12 h . After the resin was removed by filtration, the solvent was evaporated under reduced pressure to give a residue, which was purified by crystallization from benzene to give the title diol 12 ($6.89 \mathrm{~g}, 82 \%$) as colorless needles.

2-(2-Bromoethoxy)tetrahydropyran. $\quad v_{\max }$ (neat) $/ \mathrm{cm}^{-1} \quad 2950$, 1120 and $1030 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 4.68(1 \mathrm{H}, \mathrm{t}, J 3.6$ $\mathrm{Hz}), 4.02(1 \mathrm{H}, \mathrm{td}, J 12.0,5.6 \mathrm{~Hz}), 3.89(1 \mathrm{H}, \mathrm{ddd}, J 11.4,8.2,3.3$ Hz), 3.77 ($1 \mathrm{H}, \mathrm{td}, J 12.2,5.6 \mathrm{~Hz}$), $3.48-3.56(3 \mathrm{H}, \mathrm{m}), 1.52-1.88$ ($6 \mathrm{H}, \mathrm{m}$).
N, N-Bis[2-(tetrahydropyran-2-yloxy)ethyl]toluene- \boldsymbol{p}-sulfonamide. $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2950,1350,1160,1040$ and $740 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.73(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J 8.0$ Hz), $4.53(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.76-3.89(4 \mathrm{H}, \mathrm{m}), 3.40-3.59(8 \mathrm{H}, \mathrm{m}), 2.41$ $(3 \mathrm{H}, \mathrm{s}), 1.49-1.78(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 143.10, 137.16, 129.55, 127.20, 98.97, 66.30, 62.22, 48.68, 30.48, 25.34, 24.45, 19.39; m/z (FAB) $428\left(\mathrm{M}^{+}+\mathrm{H}\right), 344\left(\mathrm{M}^{+}+\mathrm{H}-\right.$ THP), 260 ($\mathrm{M}^{+}+\mathrm{H}-2 \mathrm{THP}$).

Compound 12. Mp 104.0-104.5 ${ }^{\circ} \mathrm{C}$ (from benzene); $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3230,1330,1155,710$ and $690 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 7.70(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}), 7.33(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}), 4.11(2 \mathrm{H}$, br s), $3.85\left(4 \mathrm{H}, \mathrm{br}\right.$ s), $3.26(4 \mathrm{H}, \mathrm{t}, J 4.9 \mathrm{~Hz}), 2.43(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 143.69,135.12,129.80,127.23,62.13$, 52.92, 21.44; m/z (FAB) $260.0961\left(\mathrm{M}^{+}+\mathrm{H} . \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires m / z, 260.0957) (Found: C, 51.18; H, 6.57; N, 5.37. Calc. for $\left.\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 50.95 ; \mathrm{H}, 6.61 ; \mathrm{N}, 5.40 \%\right)$.

Preparation of N, N-bis(2-allyloxyethyl)toluene-p-sulfonamide 11

To a stirred solution of diol $\mathbf{1 2}(1.04 \mathrm{~g}, 4.00 \mathrm{mmol})$ in DMF (40.0 mL) was added NaH (60% oil dispersion; $480 \mathrm{mg}, 12.0$ mmol, 3.00 equiv.) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min . Allyl bromide ($1.04 \mathrm{~mL}, 12.0 \mathrm{mmol}, 3.00$ equiv.) was then added, and the mixture was stirred for 1 h . The reaction was quenched by water, and the product was extracted with AcOEt. Combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure and the residue was subjected to column chromatography (n-hexane-AcOEt 4:1~1:1) to yield title compound 11 $(846 \mathrm{mg}, 63 \%)$ as a colorless oil; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2926,2863$, $1343,1157,737$ and $715 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.72(2 \mathrm{H}$,
d, $J 8.3 \mathrm{~Hz}$), $7.28(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}), 5.84(2 \mathrm{H}, \mathrm{ddt}, J 17.3,10.5$, $5.4 \mathrm{~Hz}), 5.23(2 \mathrm{H}, \mathrm{dtd}, J 17.3,1.7,1.6 \mathrm{~Hz}), 5.16$ (2 H , dtd, $J 10.5$, $1.5,1.4 \mathrm{~Hz}$), $3.93(4 \mathrm{H}$, ddd, $J 5.7,1.5,1.5 \mathrm{~Hz}), 3.59(4 \mathrm{H}, \mathrm{t}, J 6.0$ $\mathrm{Hz}), 3.40(4 \mathrm{H}, \mathrm{t}, J 6.1 \mathrm{~Hz}), 2.42(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 143.05,136.83,134.35,129.46$, 127.05, 116.82, 71.81, 69.00, 48.74, 21.32; m/z (FAB) $340.1580\left(\mathrm{M}^{+}+\mathrm{H} . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires $m / z, 340.1583$).

General procedure for RCM

RCM of 7. To a stirred solution of diene $7(70.3 \mathrm{mg}, 0.200$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added catalyst $8(16.4 \mathrm{mg}$, 0.0200 mmol). The solution was degassed three times by the freeze-pump-thaw (FPT) method and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2.5 h . The solvent was removed under reduced pressure to give a residue, which was purified by silica gel column chromatography (n-hexane-AcOEt 3:1). Azacycloundecenes $5(7.4 \mathrm{mg}, 12 \%)$ and $6(38.3 \mathrm{mg}, 62 \%)$ were isolated as a white powder and white crystals, respectively.

RCM of 11. To a stirred solution of $\mathbf{1 1}(67.9 \mathrm{mg}, 0.200 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added $\mathbf{8}(16.4 \mathrm{mg}, 0.0200 \mathrm{mmol})$. The solution was degassed three times (FPT) and the reaction mixture was stirred at rt for 15 h . The solvent was removed under reduced pressure to give a residue, which was purified by silica gel column chromatography (n-hexane-AcOEt 2:1). Heterocycles $10(32.9 \mathrm{mg}, 53 \%)$ and $13(20.1 \mathrm{mg}, 32 \%)$ were isolated, both as colorless needles.

Compound 10. $\mathrm{Mp} 87.0-89.0^{\circ} \mathrm{C}$ (from AcOEt); $v_{\max }(\mathrm{KBr}) /$ cm^{-1} 2960, 2941, 2912, 2866, 1335, 1165 and 742; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.69(2 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}), 7.31(2 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz})$, $5.76(2 \mathrm{H}, \mathrm{m}), 4.28(4 \mathrm{H}, \mathrm{dd}, J 3.7,1.2 \mathrm{~Hz}), 3.79(4 \mathrm{H}, \mathrm{t}, J 4.7 \mathrm{~Hz})$, $3.27(4 \mathrm{H}, \mathrm{t}, J 4.7 \mathrm{~Hz}), 2.43(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 143.36, 135.45, 129.69, 129.67, 127.30, 68.82, 66.86, 51.31, 21.48; m/z (FAB) $312.1263\left(\mathrm{M}^{+}+\mathrm{H} . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires $\mathrm{m} / \mathrm{z}, 312.1270$) (Found: C, 57.69; H, 6.62; N, 4.50. Calc. for $\left.\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 57.86 ; \mathrm{H}, 6.80 ; \mathrm{N}, 4.50 \%\right)$.
X-Ray crystal structure analysis of compound 10.-Crystal dimensions $0.45 \times 0.36 \times 0.45 \mathrm{~mm}$, triclinic, $P 1(\# 2), \quad a=$ 9.613(10), $b=9.77(1), c=9.05(1) \AA, a=95.92(7), \beta=102.94(6)$, $\gamma=103.18(5)^{\circ}, \quad V=795(1) \AA^{3}, \quad Z=2, \quad D_{\text {calc }}=1.229 \mathrm{~g} \mathrm{~cm}^{-3}$, $T=298 \mathrm{~K}, F(000)=332$. Rigaku RAXIS-II Imaging Plate diffractometer, $\lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71070 \AA, \mu=2.18 \mathrm{~cm}^{-1}$. The final refinement of F^{2} carried out by full-matrix least-squares techniques converged at $w R\left(F^{2}\right)=0.083$ for 2537 reflections with $R(F)=0.067$ for 2377 reflections obeying $F_{0}>3.0 \sigma\left(F_{0}\right)$ and 191 parameters.

Compound 13.-Mp 147.5-148.3 ${ }^{\circ} \mathrm{C}$ (from AcOEt); $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 2931,2866,1344,1165$ and $737 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;\right.$ $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 7.69(4 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}), 7.29(4 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}), 5.76-5.97$ $(4 \mathrm{H}, \mathrm{m}), 3.94(8 \mathrm{H}, \mathrm{dd}, J 2.5,1.5 \mathrm{~Hz}), 3.63(8 \mathrm{H}, \mathrm{t}, J 5.9 \mathrm{~Hz}), 3.36$ $(8 \mathrm{H}, \mathrm{t}, J 5.9 \mathrm{~Hz}), 2.42(6 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 143.29, 136.30, 129.67, 128.65, 127.17, 70.81, 69.96, 49.44, 21.48; m/z (FAB) $623.2461\left(\mathrm{M}^{+}+\mathrm{H} . \mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}\right.$ requires m / z, 623.2461) (Found: C, 57.56; H, 6.67; N, 4.40. Calc. for $\left.\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 57.86 ; \mathrm{H}, 6.80 ; \mathrm{N}, 4.50 \%\right)$.

Acknowledgements

We thank the Ministry of Education, Science, Sports and Culture and the Uehara Memorial Foundation for supporting our research program. We also thank Dr K. Yamaguchi, Dr H. Seki and Ms R. Hara at the Analytical Center, Chiba University, for measuring the X-ray spectra, elemental analysis, and mass spectroscopy, respectively.

References

1 R. Sakai, S. Kohmoto, T. Higa, C. W. Jefford and G. Bernardinelli, Tetrahedron Lett., 1987, 28, 5493.

2 (a) Y. Torisawa, A. Hashimoto, M. Nakagawa and T. Hino, Tetrahedron Lett., 1989, 30, 6549; (b) Y. Torisawa, A. Hashimoto, M. Nakagawa, H. Seki, R. Hara and T. Hino, Tetrahedron, 1991, 47, 8067.

3 (a) W. Nowak and H. Gerlach, Liebigs Ann. Chem., 1993, 153; (b) T. Vidal, E. Magnier and Y. Langlois, Tetrahedron, 1998, 54 5959.

4 Y. Torisawa, A. Hashimoto, M. Okouchi, T. Iimori, M. Nagasawa,
T. Hino and M. Nakagawa, Bioorg. Med. Chem. Lett., 1996, 6, 2565.

5 Recent reviews: (a) R. H. Grubbs and S. Chang, Tetrahedron, 1998, 54, 4413; (b) S. K. Armstrong, J. Chem. Soc., Perkin Trans. 1, 1998, 371; (c) M. Schuster and S. Blechert, Angew. Chem., Int. Ed. Engl., 1997, 36, 2036.
6 H. E. Sukkari, J.-P. Gesson and B. Renoux, Tetrahedron Lett., 1998, 39, 4043.

